Panayiota Poirazi runs the Poirazi Lab at the FORTH Institute of Molecular Biology and Biotechnology, and Yiota loves dendrites, those branching tree-like structures sticking out of all your neurons, and she thinks you should love dendrites, too, whether you study biological or artificial intelligence. In neuroscience, the old story was that dendrites just reach out and collect incoming signals for the all-important neuron cell body to process. Yiota, and people Like Matthew Larkum, with whom I chatted in episode 138, are continuing to demonstrate that dendrites are themselves computationally complex and powerful, doing many varieties of important signal transformation before signals reach the cell body. For example, in 2003, Yiota showed that because of dendrites, a single neuron can act as a two-layer artificial neural network, and since then others have shown single neurons can act as deeper and deeper multi-layer networks. In Yiota’s opinion, an even more important function of dendrites is increased computing efficiency, something evolution favors and something artificial networks need to favor as well moving forward.
Nick Enfield is a professor of linguistics at the University of Sydney. In this episode we discuss topics in his most recent book, Language vs. Reality: Why Language Is Good for Lawyers and Bad for Scientists. A central question in the book is what is language for? What’s the function of language. You might be familiar with the debate about whether language evolved for each of us thinking our wonderful human thoughts, or for communicating those thoughts between each other. Nick would be on the communication side of that debate, but if by communication we mean simply the transmission of thoughts or information between people – I have a thought, I send it to you in language, and that thought is now in your head – then Nick wouldn’t take either side of that debate. He argues the function language goes beyond the transmission of information, and instead is primarily an evolved solution for social coordination – coordinating our behaviors and attention. When we use language, we’re creating maps in our heads so we can agree on where to go.
Jeffrey Bowers is a psychologist and professor at the University of Bristol. As you know, many of my previous guests are in the business of comparing brain activity to the activity of units in artificial neural network models, when humans or animals and the models are performing the same tasks. And a big story that has emerged over the past decade or so is that there’s a remarkable similarity between the activities and representations in brains and models. This was originally found in object categorization tasks, where the goal is to name the object shown in a given image, where researchers have compared the activity in the models good at doing that to the activity in the parts of our brains good at doing that. It’s been found in various other tasks using various other models and analyses, many of which we’ve discussed on previous episodes, and more recently a similar story has emerged regarding a similarity between language-related activity in our brains and the activity in large language models. Namely, the ability of our brains to predict an upcoming word can been correlated with the models ability to predict an upcoming word. So the word is that these deep learning type models are the best models of how our brains and cognition work.
Gary Lupyan runs the Lupyan Lab at University of Wisconsin, Madison, where he studies how language and cognition are related. In some ways, this is a continuation of the conversation I had last episode with Ellie Pavlick, in that we partly continue to discuss large language models. But Gary is more focused on how language, and naming things, categorizing things, changes our cognition related those things. How does naming something change our perception of it, and so on. He’s interested in how concepts come about, how they map onto language. So we talk about some of his work and ideas related to those topics.
And we actually start the discussion with some of Gary’s work related the variability of individual humans’ phenomenal experience, and how that affects our individual cognition. For instance, some people are more visual thinkers, others are more verbal, and there seems to be an appreciable spectrum of differences that Gary is beginning to experimentally test.
Ellie Pavlick runs her Language Understanding and Representation Lab at Brown University, where she studies lots of topics related to language. In AI, large language models, sometimes called foundation models, are all the rage these days, with their ability to generate convincing language, although they still make plenty of mistakes. One of the things Ellie is interested in is how these models work, what kinds of representations are being generated in them to produce the language they produce. So we discuss how she’s going about studying these models. For example, probing them to see whether something symbolic-like might be implemented in the models, even though they are the deep learning neural network type, which aren’t suppose to be able to work in a symbol-like manner. We also discuss whether grounding is required for language understanding – that is, whether a model that produces language well needs to connect with the real world to actually understand the text it generates. We talk about what language is for, the current limitations of large language models, how the models compare to humans, and a lot more.