BI 109 Mark Bickhard: Interactivism

BI 109 Mark Bickhard: Interactivism

Brain Inspired
Brain Inspired
BI 109 Mark Bickhard: Interactivism
Loading
/

Mark and I discuss a wide range of topics surrounding his Interactivism framework for explaining cognition. Interactivism stems from Mark’s account of representations and how what we represent in our minds is related to the external world – a challenge that has plagued the mind-body problem since the beginning. Basically, representations are anticipated interactions with the world, that can be true (if enacting one helps an organism maintain its thermodynamic relation with the world) or false (if it doesn’t). And representations are functional, in that they function to maintain far from equilibrium thermodynamics for the organism for self-maintenance. Over the years, Mark has filled out Interactivism, starting with a process metaphysics foundation and building from there to account for representations, how our brains might implement representations, and why AI is hindered by our modern “encoding” version of representation. We also compare interactivism to other similar frameworks, like enactivism, predictive processing, and the free energy principle

BI 108 Grace Lindsay: Models of the Mind

BI 108 Grace Lindsay: Models of the Mind

Brain Inspired
Brain Inspired
BI 108 Grace Lindsay: Models of the Mind
Loading
/

Grace and I discuss her new book Models of the Mind, about the blossoming and conceptual foundations of the computational approach to study minds and brains. Each chapter of the book focuses on one major topic and provides historical context, the major concepts that connect models to brain functions, and the current landscape of related research endeavors. We cover a handful of those during the episode, including the birth of AI, the difference between math in physics and neuroscience, determining the neural code and how Shannon information theory plays a role, whether it’s possible to guess a brain function based on what we know about some brain structure, “grand unified theories” of the brain. We also digress and explore topics beyond the book.

BI 107 Steve Fleming: Know Thyself

BI 107 Steve Fleming: Know Thyself

Brain Inspired
Brain Inspired
BI 107 Steve Fleming: Know Thyself
Loading
/

Steve and I discuss many topics from his new book Know Thyself: The Science of Self-Awareness. The book covers the full range of what we know about metacognition and self-awareness, including how brains might underlie metacognitive behavior, computational models to explain mechanisms of metacognition, how and why self-awareness evolved, its role and potential origins in theory of mind and social interaction, and how our metacognitive skills develop over our lifetimes. We also discuss what it might look like when we are able to build metacognitive AI, and whether that’s even a good idea.

BI 106 Jacqueline Gottlieb and Robert Wilson: Deep Curiosity

BI 106 Jacqueline Gottlieb and Robert Wilson: Deep Curiosity

Brain Inspired
Brain Inspired
BI 106 Jacqueline Gottlieb and Robert Wilson: Deep Curiosity
Loading
/

Jackie and Bob discuss their research and thinking about curiosity. We also discuss how one should go about their career (qua curiosity), how eye movements compare with other windows into cognition, and whether we can and should create curious AI agents (Bob is an emphatic yes, and Jackie is slightly worried that will be the time to worry about AI).

BI 105 Sanjeev Arora: Off the Convex Path

BI 105 Sanjeev Arora: Off the Convex Path

Brain Inspired
Brain Inspired
BI 105 Sanjeev Arora: Off the Convex Path
Loading
/

Sanjeev and I discuss some of the progress toward understanding how deep learning works, specially under previous assumptions it wouldn’t or shouldn’t work as well as it does. Deep learning poses a challenge for mathematics, because its methods aren’t rooted in mathematical theory and therefore are a “black box” for math to open. We discuss how Sanjeev thinks optimization, the common framework for thinking of how deep nets learn, is the wrong approach. Instead, a promising alternative focuses on the learning trajectories that occur as a result of different learning algorithms. We discuss two examples of his research to illustrate this: creating deep nets with infinitely large layers (and the networks still find solutions among the infinite possible solutions!), and massively increasing the learning rate during training (the opposite of accepted wisdom, and yet, again, the network finds solutions!). We also discuss his past focus on computational complexity and how he doesn’t share the current neuroscience optimism comparing brains to deep nets.