Steve and I discuss many topics from his new book Know Thyself: The Science of Self-Awareness. The book covers the full range of what we know about metacognition and self-awareness, including how brains might underlie metacognitive behavior, computational models to explain mechanisms of metacognition, how and why self-awareness evolved, its role and potential origins in theory of mind and social interaction, and how our metacognitive skills develop over our lifetimes. We also discuss what it might look like when we are able to build metacognitive AI, and whether that’s even a good idea.
Jackie and Bob discuss their research and thinking about curiosity. We also discuss how one should go about their career (qua curiosity), how eye movements compare with other windows into cognition, and whether we can and should create curious AI agents (Bob is an emphatic yes, and Jackie is slightly worried that will be the time to worry about AI).
Sanjeev and I discuss some of the progress toward understanding how deep learning works, specially under previous assumptions it wouldn’t or shouldn’t work as well as it does. Deep learning poses a challenge for mathematics, because its methods aren’t rooted in mathematical theory and therefore are a “black box” for math to open. We discuss how Sanjeev thinks optimization, the common framework for thinking of how deep nets learn, is the wrong approach. Instead, a promising alternative focuses on the learning trajectories that occur as a result of different learning algorithms. We discuss two examples of his research to illustrate this: creating deep nets with infinitely large layers (and the networks still find solutions among the infinite possible solutions!), and massively increasing the learning rate during training (the opposite of accepted wisdom, and yet, again, the network finds solutions!). We also discuss his past focus on computational complexity and how he doesn’t share the current neuroscience optimism comparing brains to deep nets.
What is creativity? How do we measure it? How do our brains implement it, and how might AI?Those are some of the questions John, David, and I discuss. The neuroscience of creativity is young, in its “wild west” days still. We talk about a few creativity studies they’ve performed that distinguish different creative processes with respect to different levels of expertise (in this case, in jazz improvisation), and the underlying brain circuits and activity, including using transcranial direct current stimulation to alter the creative process. Related to creativity, we also discuss the phenomenon and neuroscience of insight (the topic of John’s book, The Eureka Factor), unconscious automatic type 1 processes versus conscious deliberate type 2 processes, states of flow, creative process versus creative products, and a lot more.
Randal, Ken, and I discuss a host of topics around the future goal of uploading our minds into non-brain systems, to continue our mental lives and expand our range of experiences. The basic requirement for such a subtrate-independent mind is to implement whole brain emulation. We discuss two basic approaches to whole brain emulation. The “scan and copy” approach proposes we somehow scan the entire structure of our brains (at whatever scale is necessary) and store that scan until some future date when we have figured out how to us that information to build a substrate that can house your mind. The “gradual replacement” approach proposes we slowly replace parts of the brain with functioning alternative machines, eventually replacing the entire brain with non-biological material and yet retaining a functioning mind.
Randal and Ken are neuroscientists who understand the magnitude and challenges of a massive project like mind uploading, who also understand what we can do right now, with current technology, to advance toward that lofty goal, and who are thoughtful about what steps we need to take to enable further advancements