BI 124 Peter Robin Hiesinger: The Self-Assembling Brain

BI 124 Peter Robin Hiesinger: The Self-Assembling Brain

Brain Inspired
Brain Inspired
BI 124 Peter Robin Hiesinger: The Self-Assembling Brain
Loading
/

Robin and I discuss many of the ideas in his book The Self-Assembling Brain: How Neural Networks Grow Smarter. The premise is that our DNA encodes an algorithmic growth process that unfolds information via time and energy, resulting in a connected neural network (our brains!) imbued with vast amounts of information from the “start”. This contrasts with modern deep learning networks, which start with minimal initial information in their connectivity, and instead rely almost solely on learning to gain their function. Robin suggests we won’t be able to create anything with close to human-like intelligence unless we build in an algorithmic growth process and an evolutionary selection process to create artificial networks.

BI 123 Irina Rish: Continual Learning

BI 123 Irina Rish: Continual Learning

Brain Inspired
Brain Inspired
BI 123 Irina Rish: Continual Learning
Loading
/

Irina is a faculty member at MILA-Quebec AI Institute and a professor at Université de Montréal. She has worked from both ends of the neuroscience/AI interface, using AI for neuroscience applications, and using neural principles to help improve AI. We discuss her work on biologically-plausible alternatives to back-propagation, using “auxiliary variables” in addition to the normal connection weight updates. We also discuss the world of lifelong learning, which seeks to train networks in an online manner to improve on any tasks as they are introduced. Catastrophic forgetting is an obstacle in modern deep learning, where a network forgets old tasks when it is trained on new tasks. Lifelong learning strategies, like continual learning, transfer learning, and meta-learning seek to overcome catastrophic forgetting, and we talk about some of the inspirations from neuroscience being used to help lifelong learning in networks.

BI 122 Kohitij Kar: Visual Intelligence

BI 122 Kohitij Kar: Visual Intelligence

Brain Inspired
Brain Inspired
BI 122 Kohitij Kar: Visual Intelligence
Loading
/

Ko and I discuss a range of topics around his work to understand our visual intelligence. Ko was a postdoc in Jim Dicarlo’s lab, where he helped develop the convolutional neural network models that have become the standard for explaining core object recognition. He is starting his own lab at York University, where he will continue to expand and refine the models, adding important biological details and incorporating models for brain areas outside the ventral visual stream. He will also continue recording neural activity, and performing perturbation studies to better understand the networks involved in our visual cognition.

BI 121 Mac Shine: Systems Neurobiology

BI 121 Mac Shine: Systems Neurobiology

Brain Inspired
Brain Inspired
BI 121 Mac Shine: Systems Neurobiology
Loading
/

Mac and I discuss his systems level approach to understanding brains, and his theoretical work suggesting important roles for the thalamus, basal ganglia, and cerebellum, shifting the dynamical landscape of brain function within varying behavioral contexts. We also discuss his recent interest in the ascending arousal system and neuromodulators. Mac thinks the neocortex has been the sole focus of too much neuroscience research, and that the subcortical brain regions and circuits have a much larger role underlying our intelligence.

BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories

BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories

Brain Inspired
Brain Inspired
BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories
Loading
/

James, Andrew, and Weinan discuss their recent theory about how the brain might use complementary learning systems to optimize our memories. The idea is that our hippocampus creates our episodic memories for individual events, full of particular details. And through a complementary process, slowly consolidates those memories within our neocortex through mechanisms like hippocampal replay. The new idea in their work suggests a way for the consolidated cortical memory to become optimized for generalization, something humans are known to be capable of but deep learning has yet to build. We discuss what their theory predicts about how the “correct” process depends on how much noise and variability there is in the learning environment, how their model solves this, and how it relates to our brain and behavior.