BI 121 Mac Shine: Systems Neurobiology

BI 121 Mac Shine: Systems Neurobiology

Brain Inspired
Brain Inspired
BI 121 Mac Shine: Systems Neurobiology
Loading
/

Mac and I discuss his systems level approach to understanding brains, and his theoretical work suggesting important roles for the thalamus, basal ganglia, and cerebellum, shifting the dynamical landscape of brain function within varying behavioral contexts. We also discuss his recent interest in the ascending arousal system and neuromodulators. Mac thinks the neocortex has been the sole focus of too much neuroscience research, and that the subcortical brain regions and circuits have a much larger role underlying our intelligence.

BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories

BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories

Brain Inspired
Brain Inspired
BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories
Loading
/

James, Andrew, and Weinan discuss their recent theory about how the brain might use complementary learning systems to optimize our memories. The idea is that our hippocampus creates our episodic memories for individual events, full of particular details. And through a complementary process, slowly consolidates those memories within our neocortex through mechanisms like hippocampal replay. The new idea in their work suggests a way for the consolidated cortical memory to become optimized for generalization, something humans are known to be capable of but deep learning has yet to build. We discuss what their theory predicts about how the “correct” process depends on how much noise and variability there is in the learning environment, how their model solves this, and how it relates to our brain and behavior.

BI 119 Henry Yin: The Crisis in Neuroscience

BI 119 Henry Yin: The Crisis in Neuroscience

Brain Inspired
Brain Inspired
BI 119 Henry Yin: The Crisis in Neuroscience
Loading
/

Henry and I discuss why he thinks neuroscience is in a crisis (in the Thomas Kuhn sense of scientific paradigms, crises, and revolutions). Henry thinks our current concept of the brain as an input-output device, with cognition in the middle, is mistaken. He points to the failure of neuroscience to successfully explain behavior despite decades of research. Instead, Henry proposes the brain is one big hierarchical set of control loops, trying to control their output with respect to internally generated reference signals. He was inspired by control theory, but points out that most control theory for biology is flawed by not recognizing that the reference signals are internally generated. Instead, most control theory approaches, and neuroscience research in general, assume the reference signals are what gets externally supplied… by the experimenter.

BI 118 Johannes Jäger: Beyond Networks

BI 118 Johannes Jäger: Beyond Networks

Brain Inspired
Brain Inspired
BI 118 Johannes Jäger: Beyond Networks
Loading
/

Johannes (Yogi) is a freelance philosopher, researcher & educator. We discuss many of the topics in his online course, Beyond Networks: The Evolution of Living Systems. The course is focused on the role of agency in evolution, but it covers a vast range of topics: process vs. substance metaphysics, causality, mechanistic dynamic explanation, teleology, the important role of development mediating genotypes, phenotypes, and evolution, what makes biological organisms unique, the history of evolutionary theory, scientific perspectivism, and a view toward the necessity of including agency in evolutionary theory. I highly recommend taking his course. We also discuss the role of agency in artificial intelligence, how neuroscience and evolutionary theory are undergoing parallel re-evaluations, and Yogi answers a guest question from Kevin Mitchell.

BI 117 Anil Seth: Being You

BI 117 Anil Seth: Being You

Brain Inspired
Brain Inspired
BI 117 Anil Seth: Being You
Loading
/

Anil and I discuss a range of topics from his book, BEING YOU A New Science of Consciousness. Anil lays out his framework for explaining consciousness, which is embedded in what he calls the “real problem” of consciousness. You know the “hard problem”, which was David Chalmers term for our eternal difficulties to explain why we have subjective awareness at all instead of being unfeeling, unexperiencing machine-like organisms. Anil’s “real problem” aims to explain, predict, and control the phenomenal properties of consciousness, and his hope is that, by doing so, the hard problem of consciousness will dissolve much like the mystery of explaining life dissolved with lots of good science.