Matthew Larkum runs his lab at Humboldt University of Berlin, where his group studies how dendrites contribute to computations within and across layers of the neocortex. Since the late 1990s, Matthew has continued to uncover key properties of the way pyramidal neurons stretch across layers of the cortex, their dendrites receiving inputs from those different layers – and thus different brain areas. For example, layer 5 pyramidal neurons have a set of basal dendrites near the cell body that receives feedforward-like input, and a set of apical dendrites all the way up in layer 1 that receives feedback–like input. Depending on which set of dendrites is receiving input, or neither or both, the neuron’s output functions in different modes- silent, regular spiking, or burst spiking. Matthew realized the different sets of dendritic inputs could signal different operations, often pairing feedforward sensory–like signals and feedback context-like signals. His research has shown this kind of coincidence detection is important for cognitive functions like perception, memory, learning, and even wakefulness. We discuss many of his ideas and research findings, why dendrites have long been neglected in favor of neuron cell bodies, the possibility of learning about computations by studying implementation-level phenomena, and much more.
Brian Butterworth is Emeritus Professor of Cognitive Neuropsychology at University College London. In his book, Can Fish Count?: What Animals Reveal About Our Uniquely Mathematical Minds, he describes the counting and numerical abilities across many different species, suggesting our ability to count is evolutionarily very old (since many diverse species can count). We discuss many of the examples in his book, the mathematical disability dyscalculia and its relation to dyslexia, how to test counting abilities in various species, how counting may happen in brains, the promise of creating artificial networks that can do math, and many more topics.
We discuss phenomenology as an alternative perspective on our scientific endeavors. Although we like to believe our science is objective and explains the reality of the world we inhabit, we can’t escape the fact that all of our scientific knowledge comes through our perceptions and interpretations as conscious living beings. Michel has used phenomenology to resolve many of the paradoxes that quantum mechanics generates when it is understood as a description of reality, and more recently he has applied phenomenology to the philosophy of mind and consciousness. Alex is currently trying to apply the phenomenological approach to his research on brains and behavior. Much of our conversation revolves around how phenomenology and our “normal” scientific explorations can co-exist, including the study of minds, brains, and intelligence- our own and that of other organisms. We also discuss the “blind spot” of science, the history and practice of phenomenology, various kinds of explanation, the language we use to describe things, and more.
Brains are often conceived as consisting of neurons and “everything else.” As Elena discusses, the “everything else,” including glial cells and in particular astrocytes, have largely been ignored in neuroscience. That’s partly because the fast action potentials of neurons have been assumed to underlie computations in the brain, and because technology only recently afforded closer scrutiny of astrocyte activity. Now that we can record calcium signaling in astrocytes, it’s possible to relate how astrocyte signaling with each other and with neurons may complement the cognitive roles once thought the sole domain of neurons. Although the computational role of astrocytes remains unclear, it is clear that astrocytes interact with neurons and neural circuits in dynamic and interesting ways. We talk about the historical story of astrocytes, the emerging modern story, and Elena shares her views on the path forward to understand astrocyte function in cognition, disease, homeostasis, and – Elena’s favorite current hypothesis – their integrative role in negative feedback control.
Srini is Emeritus Professor at Queensland Brain Institute in Australia. In this episode, he shares his wide range of behavioral experiments elucidating the principles of flight and navigation in insects. We discuss how bees use optic flow signals to determine their speed, distance, proximity to objects, and to gracefully land. These abilities are largely governed via control systems, balancing incoming perceptual signals with internal reference signals. We also talk about a few of the aerial robotics projects his research has inspired, many of the other cognitive skills bees can learn, the possibility of their feeling pain , and the nature of their possible subjective conscious experience.